[1] | 1 | \begin{lisp:documentation}{lex$>$}{FUNCTION}{p q {\sf \&optional} (start 0) (end (length p)) }
|
---|
| 2 | Return T if P$>$Q with respect to lexicographic order, otherwise NIL.
|
---|
| 3 | The second returned value is T if P=Q, otherwise it is NIL.
|
---|
| 4 | \end{lisp:documentation}
|
---|
| 5 |
|
---|
| 6 | \begin{lisp:documentation}{total$-$degree}{FUNCTION}{m {\sf \&optional} (start 0) (end (length m)) }
|
---|
| 7 | Return the todal degree of a monomoal M.
|
---|
| 8 | \end{lisp:documentation}
|
---|
| 9 |
|
---|
| 10 | \begin{lisp:documentation}{grlex$>$}{FUNCTION}{p q {\sf \&optional} (start 0) (end (length p)) }
|
---|
| 11 | Return T if P$>$Q with respect to graded lexicographic order,
|
---|
| 12 | otherwise NIL. The second returned value is T if P=Q, otherwise it is
|
---|
| 13 | NIL.
|
---|
| 14 | \end{lisp:documentation}
|
---|
| 15 |
|
---|
| 16 | \begin{lisp:documentation}{grevlex$>$}{FUNCTION}{p q {\sf \&optional} (start 0) (end (length p)) }
|
---|
| 17 | Return T if P$>$Q with respect to graded reverse lexicographic order,
|
---|
| 18 | NIL otherwise. The second returned value is T if P=Q, otherwise it is
|
---|
| 19 | NIL.
|
---|
| 20 | \end{lisp:documentation}
|
---|
| 21 |
|
---|
| 22 | \begin{lisp:documentation}{revlex$>$}{FUNCTION}{p q {\sf \&optional} (start 0) (end (length p)) }
|
---|
| 23 | Return T if P$>$Q with respect to reverse lexicographic order, NIL
|
---|
| 24 | otherwise. The second returned value is T if P=Q, otherwise it is
|
---|
| 25 | NIL. This is not and admissible monomial order because some sets do
|
---|
| 26 | not have a minimal element. This order is useful in constructing
|
---|
| 27 | other orders.
|
---|
| 28 | \end{lisp:documentation}
|
---|
| 29 |
|
---|
| 30 | \begin{lisp:documentation}{invlex$>$}{FUNCTION}{p q {\sf \&optional} (start 0) (end (length p)) }
|
---|
| 31 | Return T if P$>$Q with respect to inverse lexicographic order, NIL
|
---|
| 32 | otherwise The second returned value is T if P=Q, otherwise it is NIL.
|
---|
| 33 | \end{lisp:documentation}
|
---|
| 34 |
|
---|
| 35 | \begin{lisp:documentation}{elimination$-$order}{FUNCTION}{k {\sf \&key} (primary$-$order \#'lex$>$) (secondary$-$order \#'lex$>$) }
|
---|
| 36 | Return a predicate which compares monomials according to the
|
---|
| 37 | K$-$th elimination order. Two optional arguments are PRIMARY$-$ORDER
|
---|
| 38 | and SECONDARY$-$ORDER and they should be term orders which are used
|
---|
| 39 | on the first K and the remaining variables.
|
---|
| 40 | \end{lisp:documentation}
|
---|
| 41 |
|
---|
| 42 | \begin{lisp:documentation}{elimination$-$order$-$1}{FUNCTION}{order }
|
---|
| 43 | A special case of the ELIMINATION$-$ORDER when there is only
|
---|
| 44 | one primary variable.
|
---|
| 45 | \end{lisp:documentation}
|
---|
| 46 |
|
---|